Package: rsae 0.3

rsae: Robust Small Area Estimation

Empirical best linear unbiased prediction (EBLUP) and robust prediction of the area-level means under the basic unit-level model. The model can be fitted by maximum likelihood or a (robust) M-estimator. Mean square prediction error is computed by a parametric bootstrap.

Authors:Tobias Schoch [aut, cre], Burkardt John [cph]

rsae_0.3.tar.gz
rsae_0.3.zip(r-4.5)rsae_0.3.zip(r-4.4)rsae_0.3.zip(r-4.3)
rsae_0.3.tgz(r-4.4-x86_64)rsae_0.3.tgz(r-4.4-arm64)rsae_0.3.tgz(r-4.3-x86_64)rsae_0.3.tgz(r-4.3-arm64)
rsae_0.3.tar.gz(r-4.5-noble)rsae_0.3.tar.gz(r-4.4-noble)
rsae_0.3.tgz(r-4.4-emscripten)rsae_0.3.tgz(r-4.3-emscripten)
rsae.pdf |rsae.html
rsae/json (API)
NEWS

# Install 'rsae' in R:
install.packages('rsae', repos = c('https://tobiasschoch.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/tobiasschoch/rsae/issues

Uses libs:
  • openblas– Optimized BLAS
  • fortran– Runtime library for GNU Fortran applications
Datasets:
  • landsat - LANDSAT Data: Prediction of County Crop Areas Using Survey and Satellite Data
  • landsat_means - Means of the LANDSAT Data for Corn and Soybeans

On CRAN:

4.30 score 1 stars 8 scripts 904 downloads 6 exports 0 dependencies

Last updated 3 months agofrom:8053e7d64c. Checks:OK: 9. Indexed: yes.

TargetResultDate
Doc / VignettesOKNov 07 2024
R-4.5-win-x86_64OKNov 07 2024
R-4.5-linux-x86_64OKNov 07 2024
R-4.4-win-x86_64OKNov 07 2024
R-4.4-mac-x86_64OKNov 07 2024
R-4.4-mac-aarch64OKNov 07 2024
R-4.3-win-x86_64OKNov 07 2024
R-4.3-mac-x86_64OKNov 07 2024
R-4.3-mac-aarch64OKNov 07 2024

Exports:convergencefitsaemodelfitsaemodel.controlmakedatarobpredictsaemodel

Dependencies:

Robust Estimation and Prediction Under the Unit-Level SAE Model

Rendered fromrsae.Rmdusingknitr::rmarkdownon Nov 07 2024.

Last update: 2024-01-23
Started: 2021-06-15

Readme and manuals

Help Manual

Help pageTopics
Robust Small Area Estimationrsae-package rsae
Fitting SAE Modelscoef.fit_model_b convergence fitsaemodel print.fit_model_b print.summary_fit_model_b summary.fit_model_b
Tuning Parameters of 'fitsaemodel'fitsaemodel.control
LANDSAT Data: Prediction of County Crop Areas Using Survey and Satellite Datalandsat
Means of the LANDSAT Data for Corn and Soybeanslandsat_means
Synthetic Data Generation for the Basic Unit-Level SAE Modelmakedata
Robust Prediction of Random Effects, Fixed Effects, and Area-Specific Meansas.matrix.pred_model_b head.pred_model_b plot.pred_model_b print.pred_model_b residuals.pred_model_b robpredict tail.pred_model_b
Setting Up a SAE Modelas.matrix.saemodel print.saemodel saemodel summary.saemodel